SERSitive substrates in publications

Byram Chandu, Moram Sree Satya Bharati, Paweł Albrycht, Soma Venugopal Rao
Over the last decade several research groups have accomplished the fabrication of 2D periodic and 3D nanocage like structures on different materials using diverse lithographic approaches. Herein, we present the detailed studies on the fabrication of femtosecond (fs) laser‐induced periodic/ripple‐like surface structures on nickel (Ni) substrate in distilled water whereas 3D-like (nanocages) features on Ni substrates in acetone by tailoring the laser processing parameters (pulse energy). The morphological studies of simultaneously obtained Ni nanoparticles (NPs)/nanostructures (NSs) in distilled water/acetone were meticulously studied using transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM). The fabricated Ni periodic/3D-like structures were gold (Au) plated using thermal evaporation technique and subsequently utilized as surface enhanced Raman scattering (SERS) active sensors for detecting the traces of various analyte molecules such as malachite green (MG) and Nile blue (NB). The grooved Ni-Au substrates allowed us to detect extremely low concentrations of MG (500 pM) and NB (5 nM) and, significantly, utilizing a simple, portable Raman spectrometer. Moreover, the substrates have demonstrated superior reproducibility as well as multi-utility nature with a relative standard deviation (RSD) of <17%. Additionally, Au- coated Ni grooved SERS substrates have demonstrated superior sensitivity and reproducibility in comparison to commercially available Ag-based SERS sensors (SERSitive, Poland). The proposed method of fabricating ripple and nanocages of Ni SERS platforms are highly viable to overcome the cost and one-time usage of substrates for on-site detection of several analyte molecules using a portable/hand-held Raman spectrometer.
Keywords: Laser Induced Periodic Surface Structures (LIPSS), Malachite green, Nanocages, Nickel Nanostructure (NS), Nile blue, SERS, Substrates, Surface scattering, Laser ablation, Raman, Relative standard deviations
Łukasz Richter, Paweł Albrycht, Monika Księżopolska-Gocalska, Ewa Poboży, Robert Bachlińskic, Volodymyr Sashuk, Jan Paczesny, Robert Hołyst
The majority of analytical chemistry methods requires presence of target molecules directly at a sensing surface. Diffusion of analyte from the bulk towards the sensing layer is random and might be extremely lengthy, especially in case of low concentration of molecules to be detected. Thus, even the most sensitive transducer and the most selective sensing layer are limited by the efficiency of deposition of molecules on sensing surfaces. However, rapid development of new sensing technologies is rarely accompanied by new protocols for analyte deposition. To bridge this gap, we propose a method for fast and efficient deposition of variety of molecules (e.g. proteins, dyes, drugs, biomarkers, amino acids) based on application of the alternating electric field. We show the dependence between frequency of the applied electric field, the intensity of the surface enhanced Raman spectroscopy (SERS) signal and the mobility of the studied analyte. Such correlation allows for a priori selection of parameters for any desired compound without additional optimization. Thanks to the application of the electric field, we improve SERS technique by decrease of time of deposition from 20 h to 5 min, and, at the same time, reduction of the required sample volume from 2 ml to 50 μl. Our method might be paired with number of analytical methods, as it allows for deposition of molecules on any conductive surface, or a conductive surface covered with dielectric layer.
Keywords: Deposition, Electric field, Surface-enhanced Raman spectroscopy, SERS, Analyte, Detection
Dávid J. Palásti, Paweł Albrycht, Patrick Janovszky, Karolina Paszkowska, Zsolt Geretovszky and Gábor Galbács
An assessment of the feasibility of using modified surface enhanced Raman scattering substrates (Ag nanoparticles on indium‑tin-oxide glass) for quantitative nanoparticle-enhanced laser induced breakdown spectroscopy (NELIBS) was carried out. Substrates were prepared with different surface coverage from various nanoparticle sizes, and their laser ablation behaviour was tested in detail. It was found that use of those combinations are most beneficial in terms of the signal enhancement factor, which provide the shortest interparticle distances. With the application of 266 nm laser wavelength, long (ms-range) gate width, and optimized laser pulse energy, the best NELIBS signal enhancement was found to be about a factor of three. By using liquid sample deposition by spraying, which was found to provide an even distribution of liquid samples on the substrate surface, successful calibration for Mn, Zn and Cr was performed. The NELIBS signal repeatability from five repeated measurements was found to be comparable to that of LIBS (5–10% RSD). These observations indicate that the NELIBS signal enhancement approach can be used in quantitative analytical applications for liquid samples, if i) the substrate fabrication procedure has good repeatability, ii) surface coverage and nanoparticle size is tightly controlled, iii) a homogenous liquid sample deposition is achieved.
Keywords: Laser induced breakdown spectroscopy (LIBS); Nanoparticle enhanced LIBS (NELIBS); Silver nanoparticles; Indium‑tin-oxide (ITO) glass; SERS
Mss Bharathi, Abdul Kalam, Chandu Byram, Syed Hamad and Venugopal Rao Soma
The development of recyclable surface enhanced Raman scattering (SERS) based sensors has been in huge demand for trace level explosives detection. A simple, hybrid Silicon (Si) nanotextured target-based SERS platform is fabricated through patterning micro square arrays (MSA) on Si using femtosecond (fs) laser ablation technique at different fluences. Using the hybrid target Si MSA substrate loaded/decorated with Ag-Au alloy NPs (obtained using femtosecond ablation in liquids) we demonstrate the trace level detection of organic nitro-explosives [picric acid (PA), 2,4-dinitrotoluene (DNT), and 1, 3, 5-trinitroperhydro-1, 3, 5-triazine (RDX)] and their mixtures. The microstructures/nanostructures of MSA fabricated at an input fluence of 9.55 J/cm2, and decorated with Ag-Au alloy NPs, exhibited exceptional SERS enhancement factors (EFs) up to ∼1010 for MB, ∼106 for PA, and ∼104 for RDX with the detection limits obtained being ∼5 pM, ∼36 nM, and ∼400 nM for MB, PA and RDX respectively. Furthermore, we demonstrate these SERS substrates possess good reproducibility (RSD values < 15%) and a superior performance compared to a commercial Ag substrate (SERSitive, Poland). Three binary mixtures, i.e. MB-PA, MB-DNT, PA-DNT at different concentrations, were also investigated using the same SERS substrate to test the efficacy. Further, the SERS spectra of dyes, explosives, and complex mixtures were utilized for discrimination/classification using principal component analysis.
Keywords: Surface-enhanced Raman scattering, Femtosecond laser ablation, Ag–Au alloy NPs, Methylene blue, Explosives detection
Hrvoje Gebavi, Vlatko Gašparić, Dubravko Risović, Nikola Baran, Paweł Henryk Albrycht and Mile Ivanda
The paper reports on the features and advantages of horizontally oriented flexible silicon nanowires (SiNWs) substrates for surface-enhanced Raman spectroscopy (SERS) applications. The novel SERS substrates are described in detail considering three main aspects. First, the key synthesis parameters for the flexible nanostructure SERS substrates were optimized. It is shown that fabrication temperature and metal-plating duration significantly influence the flexibility of the SiNWs and, consequently, determine the SERS enhancement. Second, it is demonstrated how the immersion in a liquid followed by drying results in the formation of SiNWs bundles influencing the surface morphology. The morphology changes were described by fractal dimension and lacunar analyses and correlated with the duration of Ag plating and SERS measurements. SERS examination showed the optimal intensity values for SiNWs thickness values of 60–100 nm. That is, when the flexibility of the self-assembly SiNWs allowed hot spots occurrence. Finally, the test with 4-mercaptophenylboronic acid showed excellent SERS performance of the flexible, horizontally oriented SiNWs in comparison with several other commercially available substrates.
Keywords: flexible hot spots; horizontal silicon nanowires; 4-mercaptophenylboronic acid; surface-enhanced Raman spectroscopy (SERS); vapour–liquid–solid
Evelin Witkowska, Dorota Korsak, Aneta Kowalska, Monika Księżopolska-Gocalska, Joanna Niedziółka-Jönsson, Ewa Roźniecka, Weronika Michałowicz, Paweł Albrycht, Marta Podrażka, Robert Hołyst, Jacek Waluk & Agnieszka Kamińska
We show that surface-enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) can serve as a fast, reliable, and easy method for detection and identification of food-borne bacteria, namely Salmonella spp., Listeria monocytogenes, and Cronobacter spp., in different types of food matrices (salmon, eggs, powdered infant formula milk, mixed herbs, respectively). The main aim of this work was to introduce the SERS technique into three ISO (6579:2002; 11290–1:1996/A1:2004; 22964:2006) standard procedures required for detection of these bacteria in food. Our study demonstrates that the SERS technique is effective in distinguishing very closely related bacteria within a genus grown on solid and liquid media. The advantages of the proposed ISO-SERS method for bacteria identification include simplicity and reduced time of analysis, from almost 144 h required by standard methods to 48 h for the SERS-based approach. Additionally, PCA allows one to perform statistical classification of studied bacteria and to identify the spectrum of an unknown sample. Calculated first and second principal components (PC-1, PC-2) account for 96, 98, and 90% of total variance in the spectra and enable one to identify the Salmonella spp., L. monocytogenes, and Cronobacter spp., respectively. Moreover, the presented study demonstrates the excellent possibility for simultaneous detection of analyzed food-borne bacteria in one sample test (98% of PC-1 and PC-2) with a goal of splitting the data set into three separated clusters corresponding to the three studied bacteria species. The studies described in this paper suggest that SERS represents an alternative to standard microorganism diagnostic procedures.
Keywords: Salmonella Typhimurium, SERS, ISO methods, Food, Bacteria detection, PCA

Patent applications with SERSitive substrates:

Patent no. P.408785

(09/07/2014)

“Method for depositing metal nanoparticles on a surface in the electrochemical process, surface obtained by this method and its application“

Patent no. P.412548

(02/06/2015)

“Method for applying of analyte from a solution on the substrate for the surface-strengthened spectroscopy in electric field“

Patent application no. P.416927

(22/04/2016)

“Method for detection bacteria Salmonella spp, Cronobacter spp oraz Listeria monocytogenes in the food“

Patent application no. P.421072

(31/03/2017)

“Method for depositing metal nanoparticles on a surface in the electrochemical process, surface obtained by this method and its application“